描述

小C同学认为跑步非常有趣,于是决定制作一款叫作《天天爱跑步》的游戏。《天天爱跑步》是一个养成类游戏,需要玩家每天按时上线,完成打卡任务。
这个游戏的地图可以看作一棵包含 n (n≤3*10^5) 个节点和 n-1 条边的树,任意两个节点存在一条路径互相可达。树上节点的编号是 1~n 之间的连续正整数。
现在有 m (m≤3*10^5) 个玩家,第 i 个玩家的起点为 S_i,终点为 T_i。每天打卡任务开始时,所有玩家在第0秒同时从自己的起点出发,以每秒跑一条边的速度,不间断地沿着最短路径向着自己的终点跑去,跑到终点后该玩家就算完成了打卡任务。因为地图是一棵树,所以每个人的路径是唯一的。
小C想知道游戏的活跃度,所以在每个节点上都放置了一个观察员。在节点 j 的观察员会选择在第 W_j 秒观察玩家,一个玩家能被这个观察员观察到当且仅当该玩家在第 W_j 秒也正好到达了节点 j。小C想知道每个观察员会观察到多少人?
注意:我们认为一个玩家到达自己的终点后,该玩家就会结束游戏,他不能等待一段时间后再被观察员观察到。即对于把节点 j 作为终点的玩家:若他在第 W_j 秒前到达终点,则在节点 j 的观察员不能观察到该玩家;若他正好在第 W_j 秒到达终点,则在节点 j 的观察员可以观察到这个玩家。

输入格式

第一行有两个整数N和M 。其中N代表树的结点数量, 同时也是观察员的数量, M代表玩家的数量。
接下来n-1 行每行两个整数U和V ,表示结点U 到结点V 有一条边。
接下来一行N 个整数,其中第个整数为Wj , 表示结点出现观察员的时间。
接下来 M行,每行两个整数Si和Ti,表示一个玩家的起点和终点。
对于所有的数据,保证 1<=Si,Ti<=N,0<=Wj<=N。

输出格式

一行 N 个整数,第 i 个整数表示结点 i 的观察员可以观察到多少人。

样例输入

样例输入1
6 3
2 3
1 2 
1 4 
4 5 
4 6 
0 2 5 1 2 3 
1 5 
1 3 
2 6
样例输入2
5 3 
1 2 
2 3 
2 4 
1 5 
0 1 0 3 0 
3 1 
1 4
5 5 

样例输出

样例输入1
2 0 0 1 1 1
样例输入2
1 2 1 0 1 

数据范围与约定

样例解释

在第一个样例中,对于1号点,W1=0,故只有起点为1号点的玩家才会被观察到,所以玩家1和玩家2被观察到,共2人被观察到。
对于2号点,没有玩家在第2秒时在此结点,共0人被观察到。
对于3号点,没有玩家在第5秒时在此结点,共0人被观察到。
对于4号点,玩家1被观察到,共1人被观察到。
对于5号点,玩家1被观察到,共1人被观察到。
对于6号点,玩家3被观察到,共1人被观察到。

来源

CCF NOIP2016 D1T2